Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.

Identifieur interne : 000C34 ( Main/Exploration ); précédent : 000C33; suivant : 000C35

Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.

Auteurs : Melania Abrahamian [États-Unis] ; Audrey M V. Ah-Fong [États-Unis] ; Carol Davis [États-Unis] ; Kalina Andreeva [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:27936244

Descripteurs français

English descriptors

Abstract

To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity.

DOI: 10.1371/journal.ppat.1006097
PubMed: 27936244
PubMed Central: PMC5176271


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.</title>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Davis, Carol" sort="Davis, Carol" uniqKey="Davis C" first="Carol" last="Davis">Carol Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andreeva, Kalina" sort="Andreeva, Kalina" uniqKey="Andreeva K" first="Kalina" last="Andreeva">Kalina Andreeva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27936244</idno>
<idno type="pmid">27936244</idno>
<idno type="doi">10.1371/journal.ppat.1006097</idno>
<idno type="pmc">PMC5176271</idno>
<idno type="wicri:Area/Main/Corpus">000A76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A76</idno>
<idno type="wicri:Area/Main/Curation">000A76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A76</idno>
<idno type="wicri:Area/Main/Exploration">000A76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.</title>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Davis, Carol" sort="Davis, Carol" uniqKey="Davis C" first="Carol" last="Davis">Carol Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andreeva, Kalina" sort="Andreeva, Kalina" uniqKey="Andreeva K" first="Kalina" last="Andreeva">Kalina Andreeva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Nitrate Reductase (metabolism)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Diseases (parasitology)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Interactions hôte-pathogène (physiologie)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Nitrate reductase (métabolisme)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Nitrate Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Nitrate reductase</term>
<term>Phytophthora infestans</term>
<term>Protéines de transport membranaire</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Knockdown Techniques</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Techniques de knock-down de gènes</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27936244</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>e1006097</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1006097</ELocationID>
<Abstract>
<AbstractText>To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abrahamian</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8902-3222</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Carol</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andreeva</LastName>
<ForeName>Kalina</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>S10 OD016290</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.7.99.4</RegistryNumber>
<NameOfSubstance UI="D050901">Nitrate Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050901" MajorTopicYN="N">Nitrate Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27936244</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1006097</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-16-02379</ArticleId>
<ArticleId IdType="pmc">PMC5176271</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:587-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17 (1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25845484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1989;51:125-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 04;9(4):e92086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24649486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1954 Dec;211(2):907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13221596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Oct;12(10):1403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 29;15:538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24974100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1976 Jul 23;146(2):147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Mar;26(3):271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1993;27:115-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):628-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):316-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jul;56(7):1355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25907566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Feb 05;6:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 1963 Oct;102:573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14071658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Oct 15;1421(2):306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:155-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Jul;268(13):3620-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jun;43(6):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Oct 06;11(10):e1005493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Mar;1850(3):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24836521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 15;288(46):32861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24085297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2013 Aug 1;270(3):209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21095201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Jun 25;11(6):e1004866</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26110434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 17;6:750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16821190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Oct 31;2(10):e1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Mar;196(5):949-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24363343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Feb 09;8(2):e1000303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2013 Mar;188(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23454873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1974;12:139-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1542684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2014 Oct;82(10):2797-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25043943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1995 Mar;27(4):359-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7614559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Nov;47(11):922-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1995 Jan;16(1):53-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1998;39:1-30, 379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9328645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Sep;115(9):882-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):219-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(2):678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23160124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Apr;7(4):555-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18310352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 25;14(6):R63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2013;47:275-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24016189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 27;270(4):1557-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7829484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):618-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jun;213(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11469589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22658680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Jul;115:99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Feb 09;8(2):e1000308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(5):799-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 Nov;61(4):545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25634672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23):20913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Oct;22(10):803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26367249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Oct;90(10):1112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a017780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Jul;6(7):1200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Feb;281(2):193-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19050928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 May;56(3):638-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(2):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 May;154(Pt 5):1482-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Jan;81(1):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25319143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45(8):1197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
</region>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<name sortKey="Andreeva, Kalina" sort="Andreeva, Kalina" uniqKey="Andreeva K" first="Kalina" last="Andreeva">Kalina Andreeva</name>
<name sortKey="Davis, Carol" sort="Davis, Carol" uniqKey="Davis C" first="Carol" last="Davis">Carol Davis</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27936244
   |texte=   Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27936244" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024